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Abstract. We have developed a perturbation theory, based on the radial quantization of the
massive Thirring model (MTM). It is remarkable that the apparent difficulty in radial quantization
of massive theories, namely, the explicit ‘time’ dependence of the Hamiltonian, may be successfully
overcome. In this framework, in first order of the coupling constant of MTM, we calculate the
vacuum–vacuum amplitude with arbitrary twisted boundary conditions imposed on the Fermi fields.
In terms of sine–Gordon theory these amplitudes are nothing other than the expectation values
of exponential fields 〈exp iaϕ(0)〉. The result we have obtained coincides with the analogous
calculations recently carried out in a dual, angular quantization approach by one of the authors and
completely agrees with the exact formula conjectured by Lukyanov and Zamolodchikov.

1. Introduction

The main subject of investigation in this paper is the sine–Gordon model, which is one of the
most studied examples of two-dimensional (2D) integrable quantum field theory (IQFT). Its
action is given by

SSG =
∫

d2x

{
1

16π
∂νϕ∂

νϕ + 2µ cosβϕ

}
(1.1)

where ϕ is a real Bose field. The spectrum of the model includes the soliton, anti soliton and
some of their bound states, named breathers. The number of breathers depends on the coupling
constant β. The S-matrix, describing scattering of these particles is known exactly [1]. Due
to the famous work by Coleman [2] the sine–Gordon model is equivalent to a fermionic model
with a four-fermion interaction, namely, to the massive Thirring model (MTM), which has the
following action:

SMTM =
∫

d2x
{
iψγ ν∂νψ − M ψψ − 1

2g
(
ψγ νψ

) (
ψγνψ

)}
(1.2)

where ψ and ψ are two-component Dirac spinors. The fundamental (anti-)fermions of the
MTM should be identified with the (anti-)solitons of the sine–Gordon model. The parameters
and currents of MTM and sine–Gordon theories are related as [2]

g

π
= 1

2β2
− 1 J ν ≡ ψγ νψ = − β

2π
ενµ∂µϕ. (1.3)
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More recently Zamolodchikov obtained an exact relation between the soliton mass M and
the parameter µ in the action (1.1) [3]

µ = �
(
β2
)

π�
(
1 − β2

) [M
√
π�( 1

2 (1 + ξ))

2�(ξ/2)

]2−2β2

(1.4)

where

ξ = β2

1 − β2
. (1.5)

In this paper we consider the vacuum expectation values (VEV) of exponential fields in
the sine–Gordon model

Ga = 〈exp iaϕ(0)〉 (1.6)

where the exponential fields are normalized by the condition〈
eiaϕ(x)e−iaϕ(y)

〉
SG

→ |x − y|−4a2
as |x − y| → 0 (1.7)

which emphasizes that the ultraviolet limit of this theory is governed by the c = 1 free-boson
conformal field theory.

For two special values of the sine–Gordon coupling constant, namely, for β → 0
(the semiclassical limit) and β2 = 1

2 (the free-fermion case), this function admits a direct
calculation. The authors of [4] have used these special cases to guess the following expression
for the expectation values (1.6) for generic β2 < 1 and | Re(a)| < 1/(2β)

Ga =
(
m�( 1

2 (1 + ξ))�
(

1
2 (2 − ξ)

)
4
√
π

)2a2

× exp

{∫ ∞

0

dt

t

[
sinh2 (2aβt)

2 sinh(β2t) sinh t cosh
((

1 − β2
)
t
) − 2a2e−2t

]}
. (1.8)

In order to support the formula (1.8), some extra arguments, based on the reflection
relations with Liouville reflection amplitude [5] have been presented in the subsequent papers
[6, 7], but a rigorous proof is lacking up to now. The article [8] provides more evidence
supporting the Lukyanov–Zamolodchikov formula (1.8), where using perturbation theory in
the angular quantization approach [9], formula (1.8) has been checked in first order of the
MTM coupling constant g.

Here we apply radial quantization to the same problem. The Hamiltonian of massive
theories in the radial quantization approach has an explicit time dependence [10]. It appeared
that this apparent difficulty can be successfully overcome. Note, that to carry out the same
calculation using the ordinary Feynman diagram technique, one should sum up an infinite
number of two-loop diagrams. We hope, that such calculations should substantially increase
the confidence in the reflection relations method as a whole, which appears to be a very powerful
tool for the investigation of 2D conformal field theory (CFT) and IQFT [11, 12].

This paper is organized as follows. In section 2 we present the radial quantization of MTM.
In section 3 we calculate the VEV (1.6) at the free-fermion point g = 0. The calculation of
VEV in the first order of perturbation theory is presented in section 4. Here special attention
has been paid to the regularization procedure of the product of local fields at the coinciding
points, which has some new features in comparison with the ordinary quantization in Cartesian
coordinates. It appears that the Hankel transform is a useful tool to carry out the calculations
of section 4. The relevant mathematical details are presented in an appendix.
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2. Radial quantization of the massive Thirring model

In two-dimensional space Dirac matrices γ 0 and γ 1 have the following convenient
representation:

γ 0 = σ2 =
(

0 −i

i 0

)
γ 1 = −iσ1 = −i

(
0 1

1 0

)
. (2.1)

We denote the components of Dirac spinors as

ψ ≡
(

ψL

ψR

)
ψ ≡ ψ†γ 0. (2.2)

In this notation the action (1.7) in Euclidean space takes the form

AMTM =
∫

d2z
[
ψ

†
R∂ψR + ψ

†
L∂ψL − 1

2 iM
(
ψ

†
LψR − ψ

†
RψL

)
+ gψ

†
LψLψ

†
RψR

]
(2.3)

where z = x2+ix1, z = x2−ix1 are the complex coordinates on the Euclidean plane, ∂ ≡ ∂/∂z,
∂ ≡ ∂/∂z and d2z ≡ 2 dx1 dx2 is the volume element.

As we are intending to evaluate the VEV of the field
〈
eiaϕ(0)

〉
, which obviously is invariant

with respect to the rotations around the centre of coordinates, it is convenient to use the
conformal polar coordinates η, θ defined by

z = eη+iθ z = eη−iθ . (2.4)

In what follows, we will interpret η and θ as Euclidean time and space, respectively.
Since the conformal weights of the Fermi fields ψL and ψR are ( 1

2 , 0) and (0, 1
2 ),

respectively, their transformations under the conformal map (2.4) are given by

ψL (z, z) →
(
∂ξ

∂z

)1/2

ψL (η, θ) ψR (z, z) →
(
∂ξ

∂z

)1/2

ψR (η, θ) (2.5)

where ξ = η + iθ, ξ = η − iθ . The same transformation laws hold for the fields ψ
†
L,R .

In new coordinates (η, θ) the action (2.3) can be rewritten as

AMTM =
∫ 2π

0
dθ
∫ ∞

−∞
dη
[
iψ†

L

(
∂θ − i∂η

)
ψL − iψ†

R(∂θ + i∂η)ψR

−iMeη
(
ψ

†
LψR − ψ

†
RψL

)
+ 2gψ†

LψLψ
†
RψR

]
. (2.6)

Treating the radial coordinate η as a Euclidean time, one immediately obtains the
Hamiltonian

H =
∫ 2π

0
dθ
[
ψ

†
Li∂θψL − ψ

†
Ri∂θψR − iMeη

(
ψ

†
LψR − ψ

†
RψL

)
+ 2gψ†

LψLψ
†
RψR

]
. (2.7)

The usual canonical quantization scheme ensures the following standard equal-time
anticommutation relations:{

ψL(θ), ψ
†
L

(
θ ′) } = δ

(
θ − θ ′) {

ψR(θ), ψ
†
R

(
θ ′) } = δ

(
θ − θ ′). (2.8)

As usual, in order to develop perturbation theory one first has to solve the problem with
a quadratic Hamiltonian, ignoring the last quartic term in (2.7). Due to the explicit time
dependence of the Hamiltonian it is easier to handle the problem in the Schrödinger picture
rather than in the more conventional QFT Heisenberg picture. Thus our field operators ψL,R do
not depend on the ‘time’ η and, instead, the state vectors evolve according to the Schrödinger
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equation. Let us define the creation, annihilation operators c
†
k , d†

k , ck , dk through the Fourier
mode decompositions

ψL(θ) = 1√
2π

∑
k∈N−1/2

(
cke−ikθ + d

†
k eikθ

)
ψR(θ) = 1√

2π

∑
k∈N−1/2

(
c−keikθ + d

†
−ke−ikθ

)
ψ

†
L(θ) = 1√

2π

∑
k∈N−1/2

(
dke−ikθ + c

†
keikθ

)
ψ

†
R(θ) = 1√

2π

∑
k∈N−1/2

(
d−keikθ + c

†
−ke−ikθ

)
(2.9)

where all sums are taken over all positive half-integers (N is the set of positive integers).
As a consequence of equations (2.8) and (2.9), one can easily obtain the following

anticommutation relations for the operators ck, dk, c
†
k, d

†
k :

{ck, cl} = {
c

†
k, c

†
l

} = {dk, dl} = {
d

†
k , d

†
l

} = 0{
ck, c

†
l

} = δk,l
{
dk, d

†
l

} = δk,l k, l ∈ Z − 1
2

(2.10)

where Z is the set of integers. As usual, the Fock space (let us denote it by H) has the following
basis vectors: ∏

k∈Z−1/2

(
c

†
k

)nk
(
d

†
k

)ñk |0〉 (2.11)

where nk ∈ {0, 1} (ñk ∈ {0, 1}) are the occupation numbers of ‘particles’ created by the
operators c

†
k (d†

k ) out of the bare vacuum |0〉, which by definition satisfies the conditions

ck|0〉 = dk|0〉 = 0 k ∈ Z − 1
2 . (2.12)

Let us decompose the Hamiltonian (2.7) into the sum of a quadratic part H0 and an
interaction term Hint . In terms of the creation, annihilation operators the quadratic part H0

can be rewritten as

H0 =
∑

k∈N−1/2

[
k
(
c

†
kck − dkd

†
k + c

†
−kc−k − d−kd

†
−k

)
−iMeη

(
c

†
kd

†
−k − d−kck + dkc−k − c

†
−kd

†
k

)]
. (2.13)

The evolution of an arbitrary state |s〉 along Euclidean time η caused by the Hamiltonian
H0 is given by the Schrödinger equation

−r
∂

∂r
|s, r〉 = H0|s, r〉. (2.14)

Here and henceforth we prefer to use r ≡ Meη rather than η. To find the general
solution to the Schrödinger equation (2.14) let us denote the Hamiltonian H0 in the factorized
form

H0 =
∑

k∈N−1/2

(
H

(1)
k + H

(2)
k

)
(2.15)
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where the operator H(1)
k (H(2)

k ) includes only ck, d−k, c
†
k, d

†
−k (dk, c−k, d

†
k , c

†
−k). This makes it

convenient to represent the Fock space H as an infinite tensor product

H = ⊗k∈N−1/2
(H(1)

k ⊗ H(2)
k

)
(2.16)

where H(1)
k and H(2)

k are four-dimensional vector spaces with base vectors

|0(1)
k 〉 c

†
kd

†
−k|0(1)

k 〉 (even sector)

c
†
k |0(1)

k 〉 d
†
−k|0(1)

k 〉 (odd sector)
(2.17)

and

|0(2)
k 〉 d

†
k c

†
−k|0(2)

k 〉 (even sector)

d
†
k |0(2)

k 〉 c
†
−k|0(2)

k 〉 (odd sector)
(2.18)

respectively. The vectors |0(1)
k 〉 and |0(2)

k 〉 are defined by the conditions

ck|0(1)
k 〉 = d−k|0(1)

k 〉 = 0

dk|0(2)
k 〉 = c−k|0(2)

k 〉 = 0
(2.19)

where k ∈ N − 1
2 . Note that the bare vacuum |0〉, introduced earlier (see (2.12)) can be

represented as

|0〉 = ⊗k∈N−1/2

[
|0(1)

k 〉 ⊗ |0(2)
k 〉
]
. (2.20)

The operator H(1)
k (H(2)

k ) non-trivially acts only on the factor H(1)
k (H(2)

k ) of the full Fock
space H (2.16), hence we have reduced the initial QFT problem of infinitely many degrees
of freedom to the simple quantum mechanical one, with four-dimensional Hilbert space. A
further simplification provides the observation that the reduced Hamiltonians H

(1)
k , H(2)

k do
not mix even and odd sectors (see (2.17) and (2.18)). The resulting Schrödinger equations in
this reduced spaces take the form

−r
∂

∂r

[
αk(r) + βk(r)c

†
kd

†
−k

] ∣∣0(1)
k

〉 = H
(1)
k

[
αk(r) + βk(r)c

†
kd

†
−k

] ∣∣0(1)
k

〉
=
[
−kαk(r) + irβk(r) + (kβk(r) − irαk(r))c

†
kd

†
−k

] ∣∣0(1)
k

〉
(2.21)

and

−r
∂

∂r

[
γk(r)c

†
k + δk(r)d

†
−k

] ∣∣0(1)
k

〉 = H
(1)
k

[
γk(r)c

†
k + δk(r)d

†
−k

] ∣∣0(1)
k

〉 = 0. (2.22)

Evidently, to obtain the equations for another sector with the Hamiltonian H
(2)
k , one

simply has to change the upper indices (1) into (2) and make the substitutions ck → dk and
d−k → c−k . Thus, in both cases the unknown functions αk(r), βk(r), γk(r), δk(r) obey the
differential equations(

∂

∂r
− k

r

)
αk(r) = −iβk(r)(

∂

∂r
+

k

r

)
βk(r) = iαk(r)

∂

∂r
γk(r) = ∂

∂r
δk(r) = 0.

(2.23)
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Therefore, γk and δk do not depend on r , while αk and βk can be expressed via modified
Bessel functions Iν , Kν as follows:

αk(r) = r1/2
(
akIk−1/2(r) + bkKk−1/2(r)

)
βk(r) = ir1/2

(
akIk+1/2(r) − bkKk+1/2(r)

)
.

(2.24)

One should fix the constants ak, bk, γk and δk by imposing initial conditions at the arbitrary
‘time’ r0. For further application let us write down explicit expressions with specified constants
for two basic cases.

(a) When the initial state coincides with |0(1)
k 〉 or |0(2)

k 〉:
αk(r) = √

rr0
(
Kk+1/2 (r0) Ik−1/2(r) + Ik+1/2 (r0)Kk−1/2(r)

)
βk(r) = i

√
rr0

(
Kk+1/2 (r0) Ik+1/2(r) − Ik+1/2 (r0)Kk+1/2(r)

)
.

(2.25)

(b) When the initial state coincides with ic(†)k d
(†)
−k |0(1)

k 〉 or id(†)
k c

(†)
−k|0(2)

k 〉

αk(r) = √
rr0

(
Kk−1/2 (r0) Ik−1/2(r) − Ik−1/2 (r0)Kk−1/2(r)

)
βk(r) = i

√
rr0

(
Kk−1/2 (r0) Ik+1/2(r) + Ik−1/2 (r0)Kk+1/2(r)

)
.

(2.26)

To prove the formulae (2.25) and (2.26) we have used the following Wronskian identity for
the modified Bessel functions [13]:

Ik−1/2(r)Kk+1/2(r) + Ik+1/2(r)Kk−1/2(r) = 1

r
. (2.27)

It is interesting to note that due to the explicit time dependence of the Hamiltonian, the
system which is initially in the ground state of that particular moment will after finite evolution
time find itself in an excited state. Nevertheless, long time evolution of any state with non-
vanishing overlap with the ground state of the initial time, eventually approaches to the ground
state of the infinite future

|∞〉 ≡
∏

k∈N−1/2

[
1
2

(
1 + ic†

kd
†
−k

)(
1 + id†

k c
†
−k

)]|0〉. (2.28)

Evidently, at small r (far past), the ground state approaches to the bare vacuum |0〉. In
particular, if r � 1 and r0 � 1 equation (2.25) gives

αk(r) →
(

2

r0

)k er

√
4π

�
(
k + 1

2

)
βk(r) →

(
2

r0

)k er

√
4π

�
(
k + 1

2

)
.

(2.29)

3. The VEVs of the exponential fields in the free-fermion case

As is shown in [4], The VEV (1.6)

Ga = 〈
eiaϕ(0)

〉 = ∫Dϕ eiaϕe−SSG(ϕ)∫Dϕ e−SSG(ϕ)
(3.1)
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where SSG is the action (1.1), can be expressed alternatively in terms of the appropriately
regularized (see below) Euclidean functional integral over the Dirac fermions

G(a) =
∫

Fa

[Dψ Dψ
]

e−AMTM∫
F0

[Dψ Dψ
]

e−AMTM

(3.2)

where AMTM is the Euclidean action (2.6). The functional integral in the numerator of (3.2)
is taken over the space Fa of those twisted field configurations ψ (z, z) and ψ (z, z), which
transform as

ψ (z, z) → ei2πa/βψ (z, z) ψ (z, z) → e−i2πa/βψ (z, z) (3.3)

when continued analytically around the point z = 0 in an anticlockwise direction [4]. The
reason for this is the non-trivial monodromy of Dirac fields with respect to the exponential
fields exp iaϕ(0). It is easy to see that to impose such twisted boundary conditions on Dirac
fields, one has to shift Fourier mode indices as follows:

k → k − a

β
in sector 1 (i.e. in ck, dk sector)

k → k +
a

β
in sector 2 (i.e. in dk, ck sector).

(3.4)

For example, the Fourier decomposition of the field ψL(θ) takes the form (cf with the first line
of (2.9))

ψL(θ) = 1√
2π

∑
k∈N−1/2

(
ck−αe−i(k−α)θ + d

†
k−αei(k−α)θ

)
(3.5)

where

α ≡ a

β
. (3.6)

With such shifts, all the results of the previous sector remain valid since we have never used
the arithmetical properties of the Fourier mode indices.

In the radial Hamiltonian formalism the regularized version of the functional integral (3.2)
may be represented as

G(a, r0) = lim
r→∞

〈∞| S(r, r0) |0〉a
〈∞| S(r, r0) |0〉 (3.7)

where the matrix element of the evolution operator S(r, r0) in the numerator is taken in the
twisted sector (this is indicated by the lower index a). To regularize the expression, in (3.7)
we have assumed that the evolution begins at some small r0. A simple conformal field theory
consideration†, which takes into account the fact that the conformal dimension of the field eiaϕ

is a2, leads to

G0(a) = lim
r0→0

(r0)
−2a2

G0(a, r0). (3.8)

In the general case it is not known how to calculate the functional integral (3.2) or the matrix
elements in (3.7) exactly. Below (3.7) is evaluated at the free-fermion point g = 0. As in
this case we already know the time evolution of every constituent of the vacuum |0〉 (see

† In the limit r → 0 the action (2.6) describes the massless Thirring model, which is well known to be conformal
invariant.
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equation (2.20)) from the previous section, it is not difficult to pick up all the necessary factors
from (2.29) with appropriate shifts of Fourier mode indices and obtain

G0(a, r0) = lim
r→∞

∏
k∈N−1/2

(
2

r0

)k+α er

√
4π

�
(
k + α + 1

2

) ∏
l∈N−1/2

(
2

r0

)l−α er

√
4π

�
(
l − α + 1

2

)
×
[ ∏

k∈N−1/2

(
2

r0

)k er

√
4π

�
(
k + 1

2

) ∏
l∈N−1/2

(
2

r0

)l er

√
4π

�
(
l + 1

2

)]−1

(3.9)

where we have endowed G with the subscript 0 in order to emphasize that the free-fermion
case g = 0 is considered. We will be careful, when evaluating infinite products in (3.9) and
treat the ill-defined sums like

∑∞
i=0(i ± a) by means of Riemann ζ -function regularization.

Let us remind the reader that

ζ (z, a) =
∞∑
i=0

1

(i + a)z
(3.10)

and

ζ (−1, a) + ζ (−1,−a) − 2ζ (−1, 0) = −a2. (3.11)

To calculate the remaining infinite products of �-functions (also divergent, if treated literally),
it is convenient to use the integral representation

ln �(ν) =
∫ ∞

0

[
e−νt − e−t

1 − e−t
+ (ν − 1) e−t

]
dt

t
. (3.12)

As a result we obtain simple geometric progressions coming from the first term of
equation (3.12) and contributions coming from the second term, which can be easily handled
by applying ζ -function regularization once more. The final expression has the form

G0(a, r0) =
( r0

2

)α2

exp
∫ ∞

0

[
sinh2(αt)

sinh2 t
− α2e−2t

]
dt

t
(3.13)

or, taking into account equations (3.8) and (3.6) with the free-fermion point value β = 1/
√

2,

G0(a) =
(
M

2

)2a2

exp
∫ ∞

0

[
sinh2(

√
2at)

sinh2 t
− 2a2e−2t

]
dt

t
. (3.14)

This is in full agreement with the result, obtained by Lukyanov and Zamolodchikov in
[4], using an angular quantization technique.

4. VEV of the exponential field in the first order of perturbation theory

In this section we calculate the VEV (1.6) in first order of the MTM’s coupling constant g.
The perturbation is given by the last term of the Hamiltonian (2.7):

Hint = 2g
∫ 2π

0
N
(
3+

L3L3
+
R3R

)
dθ (4.1)

where we have denoted by N(· · ·) an appropriately regularized product of local fields at a
coinciding point. One has to chose such a regularization, which will not break the translational
invariance of the theory when transformed back to the initial Euclidean coordinates x1, x2. The
conventional normal ordering with respect to creation–annihilation operators fails to satisfy
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this condition because of the non-trivial time dependence of the physical vacuum. Instead, a
correctly regularized product one obtains suppressing all the contractions among fields inside
the normal ordering symbol N(· · ·)
N
(
ψ

†
LψLψ

†
RψR

) = ψ
†
LψLψ

†
RψR − 〈

ψ
†
LψL

〉
0ψ

†
RψR − 〈

ψ
†
RψR

〉
0ψ

†
LψL +

〈
ψ

†
LψR

〉
0ψ

†
RψL

+
〈
ψ

†
RψL

〉
0ψ

†
LψR +

〈
ψ

†
LψL

〉
0

〈
ψ

†
RψR

〉
0 − 〈

ψ
†
LψR

〉
0

〈
ψ

†
RψL

〉
0

= : ψ†
LψLψ

†
RψR : +

〈
: ψ†

LψR :
〉
0 : ψ†

RψL : +
〈
: ψ†

RψL :
〉
0 : ψ†

LψR :

−〈: ψ†
LψL :

〉
0 : ψ†

RψR : −〈: ψ†
RψR :

〉
0 : ψ†

LψL : −〈: ψ†
LψR :

〉
0

〈
: ψ†

RψL :
〉
0

+
〈
: ψ†

LψL :
〉
0

〈
: ψ†

RψR :
〉
0 (4.2)

where the symbol : : denotes the ordinary normal ordering with respect to the creation-
annihilation operators c, d , c†, d†, and the expectation value of any operator X is defined
by

〈X〉0 ≡ 〈∞|S(R, r)XS(r, r0|0〉)
〈∞|S(R, r0)|0〉 (4.3)

with all matrix elements taken in the untwisted sector. In (4.3) a small initial time r0 and a
large final time R0 are introduced in order to keep intermediate expressions finite. R and r0

eventually should be sent to 0 and ∞, respectively. Let us also emphasize the appearance of
an explicit r dependence in (4.3) and, therefore, in (4.2), which reflects the inhomogeneity of
‘time’ in our scheme of quantization.

The standard time-dependent perturbation theory in first order of the coupling constant g
gives

G(a, r0) = lim
R→∞

(
〈∞|S (R, r0) |0〉a +

∫ R

r0

〈∞|S (R, r)HintS (r, r0) |0〉a
dr

r

)
. (4.4)

As we have already obtained explicit expressions for time evolution of states from various
sectors of Fock space in section 2, it is not difficult to calculate the matrix element under the
integral in equation (4.4)

G(a, r0) = lim
R→∞

〈∞|S(R, r0)|0〉a

×
{

1 +
g

π

∞∑
k,l=0

∫ R

r0

r dr
[
2Ik+1−aKk−aIl+1+aKl+a − Ik+1−aKk−aIl+1−aKl−a

−Ik+1+aKk+aIl+1+aKl+a − Ik−aKk−aIl−a+1Kl−a+1 − Ik+aKk+aIl+a+1Kl+a+1

−Ik+1−aKk+1−aIl+1+aKl+1+a − Ik+aKk+aIl−aKl−a + Ik+1Kk+1Il−a+1Kl−a+1

+IkKkIl−a+1Kl−a+1 + IkKkIl+aKl+a + IkKkIl+a+1Kl+a+1 + IkKkIl−aKl−a

+Ik+1Kk+1Il+a+1Kl+a+1 + Ik+1Kk+1Il−aKl−a + Ik+1Kk+1Il+aKl+a

−Ik+1Kk+1Il+1Kl+1 − Ik+1Kk+1IlKl − IkKkIl+1Kl+1 − IkKkIlKl

]}
(4.5)

where the prefactor 〈∞|S(R, r0)|0〉a is given by equation (3.13) (in (3.13) we have to insert
β = 1√

2
(1 − g/2π + o(g)) and expand the resulting expression over g up to linear term). The
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calculation of integrals from the quartic products of modified Bessel functions is presented in
the appendix. Using its results we obtain

G(a, r0) = (
1
2 r0
)α2

exp

{∫ ∞

0

(
sinh2(αt)

sinh2 t
− α2e−2t

)
dt

t

}

×
{

1 +
g

2π

[
2α2 log

r0

2
+
∫ ∞

0

(
α sinh(2αt)

2 sinh2 t
− α2

t
e−2t

)
dt

]
+ O(g2)

}

×
{

1 +
g

π

[∫ ∞

0

∞∑
k,l=0

(
8 cosh2 t sinh2 αt − 4 sinh2 2αt

sinh 2t
e−2(k+l+1)t

)
dt

]

+O(g2)

}
. (4.6)

Now performing a summation over k and l in the third line of equation (4.6) we obtain
an integral which diverges logarithmically at t = 0. In fact, the same problem we
have faced when carrying out calculations at the free-fermion point. Indeed, the product
in (3.9) diverges for large k, l, but we have overcome this difficulty using ζ -function
regularization inside the integral representation of the �-function (3.12). Here there is no
necessity to carry out a similar regularization. Indeed, noticing that various regularization
schemes could differ from each other at most by a term ∼ a2, and that the coefficient of
−a2/2 in the expansion of 〈eiaφ〉 is just the VEV 〈φ2〉, already calculated in [4] using a
standard Feynman diagram technique with the result (below γ = 0.577 216 . . . is the Euler
constant)

〈φ2(0)〉 = −4(1 + γ + log(M/2)) +
g

π
(7ζ(3) − 2) + O(g2) (4.7)

we can simply cut the above-mentioned integral over t on the lower bound by a small cut-off
and require that the undefined coefficient of −a2/2 take the value predicted by equation (4.7).
The final result has the form〈
eiaφ(0)

〉 = (
1
2M

)α2

exp

{∫ ∞

0

(
sinh2(αt)

sinh2 t
− α2e−2t

)
dt

t

}

×
{

1 +
g

π

[∫ ∞

0

(
α sinh(2αt)

2 sinh2 t
− sinh2(αt)

sinh3 t

)
dt − 2α2 log 2

]
+ O(g2)

}
(4.8)

which is in complete agreement with the Lukyanov–Zamolodchikov formula (1.8).
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Appendix

It appears that the Hankel transforms are appropriate tools allowing us to perform the integration
over r in (4.5). Roughly speaking, in polar coordinates the Hankel transforms play the same
role as the ordinary Fourier transforms in the Cartesian one.
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Let us briefly recall the main formulae concerning the Hankel transforms (for details see
[13] and references therein). The νth order (ν > −1) direct and inverse Hankel transforms of
the function f (x) defined on (0,∞) are given by

f (x) =
∫ ∞

0
Jν(sx)f̃ν(s)s ds (A.1)

f̃ν(s) =
∫ ∞

0
Jν(sx)f (x)x dx (A.2)

where Jν is the Bessel function. In complete analogy with the case of the Fourier transform,
it follows from (A.1) and (A.2), that the ‘scalar product’ of any two functions f (x), g(x)

coincides with that of their images (since the functions we are dealing with are regular in the
interval (0,∞), the only thing one has to care about is the convergence of integrals at the
extreme points 0 and ∞).∫ ∞

0
f (x)g(x)x dx =

∫ ∞

0
f̃ν(s)g̃ν(s)s ds. (A.3)

To use (A.3) for the calculation of the integral in equation (4.5) we need to know Hankel images
of the functions Iν(x)Kν(x) and Iν+1(x)Kν(x) which can be easily obtained from the formula
[13]

K−ν(x)Iµ(x) =
∫ ∞

0
J−ν+µ (2x sinh t) e−(ν+µ)t dt − Re(ν + µ) < 3

2 Re(−ν + µ) > −1

(A.4)

namely

Il(x)Kl(x) =
∫ ∞

0
J0(xs)

1

s
√
s2 + 4

e−2lt (s)s ds (A.5)

Il+1(x)Kl(x) =
∫ ∞

0
J1(xs)

1

s
√
s2 + 4

e−(2l+1)t (s)s ds (A.6)

where t (s) is defined by

2 sinh t = s dt = ds√
s2 + 4

. (A.7)

Though the direct application of equation (A.3) to each term of (4.5) at first sight seems to be
problematic due to the logarithmic divergence of the integral at large r , it nevertheless leads
to a correct result, because of mutual cancellation of these divergences by various terms.

References

[1] Zamolodchikov A B and Zamolodchikov Al B 1979 Factorized S-matrices in two dimensions as the exact
solutions of certain relativistic quantum field theory models Ann. Phys., NY 120 253–91

[2] Coleman S 1975 The quantum sin-Gordon equation as the massive Thirring model Phys. Rev. D 11 2088–97
[3] Zamolodchikov Al B 1995 Mass scale in the sine–Gordon model and its reductions Int. J. Mod. Phys. A 10

1125–50
[4] Lukyanov S and Zamolodchikov A 1997 Exact expectation values of local fields in quantum sine–Gordon model

Nucl. Phys. B 493 571–87
[5] Zamolodchikov A B and Zamolodchikov Al B 1996 Structure constants and conformal bootstrap in Liouville

field theory Nucl. Phys. B 477 577–605
[6] Fateev V, Lukyanov S, Zamolodchikov A and Zamolodchikov Al 1997 Expectation values of boundary fields

in the boundary sine–Gordon Mod. Phys. Lett. B 406 83–8



3346 V V Mkhitaryan et al

[7] Fateev V, Lukyanov S, Zamolodchikov A and Zamolodchikov Al 1998 Expectation values of local fields in
Bullough–Dodd model and integrable perturbed conformal field theories Nucl. Phys. B 516 652–74

[8] Poghossian R H 2000 Perturbation theory in angular quantization approach and the expectation values of
exponential fields in sine–Gordon model Nucl. Phys. B 570 506–22

(Poghossian R H 1999 Preprint hep-th/9904194)
[9] Lukyanov S 1995 Free field representation for massive integrable models Commun. Math. Phys. 167 183–226

Lukyanov S 1994 Correlators of the Jost functions in the sine–Gordon model Phys. Lett. B 325 409–17
[10] Fubini S, Hanson A J and Jackiw R 1973 New approach to field theory Phys. Rev. D 7 1732–60
[11] Baseilhac P and Fateev V A 1998 Expectation values of local fields for a two-parameter family of integrable

models and related perturbed conformal field theories Nucl. Phys. B 532 567–87
[12] Changrim Ahn, Fateev V A, Chanju Kim, Chaiho Rim, Yang B 2000 Reflection amplitudes of ADE Toda theories

and thermodynamic Bethe ansatz Nucl. Phys. B 565 611–28
(Changrim Ahn, Fateev V A, Chanju Kim, Chaiho Rim, Yang B 1999 Preprint hep-th/9907072)

[13] Bateman H and Erdelyi A 1953 Higher Transcendental Functions vol II (New York: McGraw-Hill)


